Data-Driven Detection of Stealth Cyber-Attacks in DC Microgrids
نویسندگان
چکیده
Cyber-physical systems such as microgrids contain numerous attack surfaces in communication links, sensors, and actuators forms. Manipulating the links sensors is done to inject anomalous data that can be transmitted through cyber layer along with original stream. The presence of malicious, packets a dc microgrid create hindrances fulfilling control objectives, leading voltage instability affecting load dispatch patterns. Hence, detecting essential for restoration system stability. This article answers two important research questions: 1) Which data-driven detection scheme offers best performance against stealth cyber-attacks microgrids? 2) What improvement when fusing features (i.e., current data) training compared using single feature current)? Our investigations revealed adopting an unsupervised deep recurrent autoencoder anomaly superior other benchmarks. trained on benign generated from multisource model. Fusing 14.7% improvement. efficacy results verified experimental collected testbed subjected cyber-attacks.
منابع مشابه
Cyber Stealth Attacks in Critical Information Infrastructures
Current Critical Infrastructures (CIs) are complex interconnected industrial systems that, in recent years, have incorporated information and communications technologies such as connection to the Internet and commercial off-the-shelf components. This makes them easier to operate and maintain, but exposes them to the threats and attacks that inundate conventional networks and systems. This paper...
متن کاملScalable Detection of Cyber Attacks
Attackers can exploit vulnerabilities to incrementally penetrate a network and compromise critical systems. The enormous amount of raw security data available to analysts and the complex interdependencies among vulnerabilities make manual analysis extremely laborintensive and error-prone. To address this important problem, we build on previous work on topological vulnerability analysis, and pro...
متن کاملFault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier
Microgrids have played an important role in distribution networks during recent years. DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولIntegrated Fault-detection and Control of DC Microgrids Using SDRE Observer-controller
In this paper, using the state-dependent Riccati equation (SDRE) technique, a suboptimal fault-tolerant control scheme is designed for a DC microgrid in the islanded mode. The objectives are the voltages control of the photo-voltaic cell, the battery, the capacitor bank, and the DC bus as well as on time fault detection. In the design procedure of the SDRE observer-controller, a nonlinear mathe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Systems Journal
سال: 2022
ISSN: ['1932-8184', '1937-9234', '2373-7816']
DOI: https://doi.org/10.1109/jsyst.2022.3183140